A resultant matrix for scaled Bernstein polynomials
نویسندگان
چکیده
منابع مشابه
A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials
In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.
متن کاملDiscrete Bernstein Inequalities for Polynomials
We study discrete versions of some classical inequalities of Berstein for algebraic and trigonometric polynomials. Mathematics subject classification (2010): 30C10, 41A17.
متن کاملDivision algorithms for Bernstein polynomials
Three division algorithms are presented for univariate Bernstein polynomials: an algorithm for finding the quotient and remainder of two univariate polynomials, an algorithm for calculating the GCD of an arbitrary collection of univariate polynomials, and an algorithm for computing a μ-basis for the syzygy module of an arbitrary collection of univariate polynomials. Division algorithms for mult...
متن کاملHybrid Sparse Resultant Matrices for Bivariate Polynomials
We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2000
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(00)00189-0